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Abstract

Objective: Determining which subgroups show the most substantial differences 
on a measure is a common use of surveys. How to accurately and fairly determine 
which subgrouping is most important has not been addressed adequately in the 
literature. I show how dominance analysis is a useful way to identify the most 
important subgroup differences. Because surveys commonly employ complex 
sampling designs, I also provide practical guidelines for determining subgroup 
relative importance from complex survey data.
Methods: The advantages of dominance analysis over alternative analysis 
procedures for determining importance are discussed using an empirical 
example from the political party affiliation question in the General Social 
Survey. Additionally, a Monte Carlo simulation was conducted to examine the 
accuracy of dominance analysis with complex sampling accounting for sample 
weights, strata, both, and neither compared to known population values.
Results: Dominance analysis clearly identifies the urbanicity subgrouping as 
having the most important differences on political party affiliation. Results also 
show the use of survey weights can have non-trivial effects on subgroup rank 
ordering. The simulation shows that weighed dominance statistics were more 
accurate than unweighted statistics. Stratified analyses had no effect on relative 
importance statistics.
Conclusions: Dominance analysis is a useful way to identify key subgroup 
differences on survey measures. Survey weights are necessary to use for dominance 
analysis, when available, in order to obtain an accurate representation of the 
rank order and magnitude of differences between subgroup indicators on a 
survey measure. The article concludes by outlining situations where dominance 
analysis is recommended.
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Introduction

Surveys are used to measure the prevalence of a behavior or attitude in a 
population but also to evaluate subgroup differences in prevalence. In fact, the 
US Census Bureau’s website provides most measures collected cross-classified by 
demographic subgroup. Polls are used similarly, commonly testing for subgroup 
differences (e.g., Tables A1–A3 in Ramirez 2013).

Survey research also seeks to determine which subgroup prevalence 
differences are the most important. To determine importance, I propose that 
the dominance analysis (DA; see Budescu 1993; Luchman 2014) of subgroup 
differences offers analysts an informative, interpretable, and fair comparison 
between the subgroups. In the coming sections, I outline what DA is and 
provide an example of the advantages offered by DA by comparison to other 
methods using data from the General Social Survey (GSS; 1972 to 2008; Davis 
et al. 2010).

What is Dominance Analysis?

DA is a procedure for determining independent variable relative importance 
in a statistical model. DA is an ensemble method, distilling results from the 
collection of models representing each possible combination of independent 
variables in a regression analysis.

The general dominance statistic for each independent variable x (i.e., Cx) is 
the most common importance statistic and is computed by:
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where Fij is the fit metric associated with model ij, p is the number of independent 
variables, ni is the number of possible combinations of size i given the p 
independent variables, and C(m, k) is the number of combinations of size k 
possible given set size m. General dominance statistics are then a weighted sum 
of all fit metrics in the ensemble.

General dominance statistics have several useful features for evaluating 
subgroup differences. First, general dominance statistics are an additive 
decomposition of the fit metric associated with the statistical model including 
all p independent variables. Therefore, the sum of all p general dominance 
statistics results in the value of the fit metric which includes all p independent 
variables. The additive decomposition property facilitates comparison between 
the independent variables because they are parts of a whole. If the share of 
the whole associated with independent variable x is greater than the share 
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associated with independent variable y, then independent variable x is more 
important than independent variable y.

Second, general dominance statistics account for covariation between the 
independent variables, yet are not dependent on a single statistical model. As 
an ensemble statistic, a general dominance statistic incorporates all fit statistics 
associated with independent variable x, yet also adjusts the sum for models 
which do not include independent variable x (i.e., the bottom summand of 
Equation 1). The adjustment makes the general dominance statistic reflect the 
average marginal or incremental contribution independent variable x makes 
to the fit metric across all potential kinds of overlap with other independent 
variables. Thus, general dominance statistics allow for an evenly balanced 
comparison of the independent variables.

Finally, general dominance statistics can also encompass several individual 
coefficients or statistics simultaneously. To be specific, DA can group together 
a subgroup/independent variable’s dummy codes and require that all of a 
subgroup’s dummy codes be considered an inseparable set in the ensemble of 
models. Thus, the fit metric associated with the entire set of dummy codes for 
a subgrouping is incorporated into a single value facilitating interpretation by 
efficiently summarizing the total impact of all the subgroup differences.

Illustration of Dominance Analysis for Subgroup 
Differences

To demonstrate how DA can facilitate determining which subgrouping is 
most important, I use data from the GSS’ 1978–2008 cumulative file (Davis 
et al. 2010) focusing on evaluating subgroup differences in the survey 
measure PARTYID, which represents respondents’ political party affiliation 
and strength with on a 7-point scale with the following options: strongly 
democratic (coded 1); not strong democrat; democratic, near independent; 
independent; republican, near independent; not strong republican; and strong 
republican (coded 7).

The subgrouping variables chosen to evaluate differences on political party 
affiliation were 1) SRCBELT representing urbanicity or the kind of urban area 
in which the respondent lives with the following categories: not assigned, largest 
12 SMSAs, 13-100 largest SMSAs, largest 12 suburbs, 13-100 largest suburbs, 
other urban, and other rural, where SMSA means metropolitan statistical area 
as designated by the US Census Bureau. 2) WRKSTAT or the respondent’s 
current employment status with the following categories: full-time, part-time, 
temporarily unemployed, laid off, retired, attending school, keeping house, and 
other. 3) MARITAL or the respondent’s current marital status with the following 
categories: married, widowed, separated, divorced, and never married. 4) SEX 
or the respondent’s biological sex with male and female options. All don’t know, 
not applicable, and no answer responses were treated as missing and list-wise 
deleted from the dataset.
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Using the four subgrouping variables and the political party affiliation 
measure, arguably the most straightforward method for attempting to 
determine which subgrouping is most important would be to cross-classify 
all four subgrouping variables with the survey measure separately. The cross-
classification approach has obvious drawbacks in that it requires the analyst 
to compute and interpret the output from four tables of values encompassing 
a total of 154 separate proportions (e.g., 7*[7+8+5+2] to represent all levels of 
the survey response and subgroupings).

As opposed to evaluating all 154 proportions, a more interpretable index 
of importance can be obtained from the cross-classifications using the methods 
outlined by Goodman and Kruskal (1954). As applied to the GSS data, the 
strongest Cramér’s V statistic (e.g., 1946) was obtained by biological sex 
(0.0801), followed by marital status (0.0748), then urbanicity (0.0608), and 
finally employment status (0.0582). The cross-classification methods produce 
a clear hierarchy among the subgroupings, which facilitates interpretation, 
showing that biological sex is the most important. A shortcoming of the cross-
classification methods is that the subgrouping with the strongest association with 
the survey measure (i.e., biological sex), irrespective of overlap/confounding 
with other subgroupings, will be chosen as the most important.

One way to ensure the comparison between the subgroupings is fairer in 
terms of adjustment for subgrouping overlap is to force them to compete in 
a statistical model to predict the survey measure. Because the political party 
affiliation measure can be represented as an ordered measure of liberality (low 
scores) to conservatism (high scores), political party affiliation was regressed 
onto all the subgroups as sets of indicator variables in an ordered logistic 
regression. The result from the regression is displayed in Table 1 in their more 
interpretable odds ratio (OR) form. All effects are compared to the first group 
as described above (i.e., not assigned, full-time, married, and male).

All four subgroupings show at least a few ORs associated with dummy 
codes that move away from the null effect of 1. Thus, ORs much lower than 
1 show tendencies for the focal group to respond as being more politically 
liberal than the comparison group and ORs much more than 1 show tendencies 
for the focal group to respond as being more politically conservative. Table 1 
thus reveals that urbanicity as well as marital status have the most substantial 
individual effects (e.g., Largest 12 SMSAs=0.5508; Divorced=0.6771) which 
are accompanied by several other effects of somewhat smaller size. Given the 
results in Table 1, it seems that either urbanicity or marital status is the most 
important subgrouping, and it is possible that they are in a close race for most 
important. By contrast, biological sex and employment status both appear to be 
less important as both have smaller effects and, similarly, it is possible that they 
are both in the running for either 3rd or 4th rank.

Whereas the ORs provide some direction for understanding how important 
each of the subgroupings are, the ORs provide evidence that is inconclusive as 
it is not clear which combination of ORs is more substantial than the others. 
Moreover, the ordered logistic regression is dependent on the results from the 
model with all the subgroupings simultaneously. Thus, strong relationships 
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between the subgroupings could strongly affect the results and have produced 
results that are substantially different than those obtained using the cross-
classification.

As was discussed above, DA incorporates the results of all possible 
combinations of models, therefore balancing predictive usefulness across models 
with many and few subgroupings/independent variables. The DA results uses 
the methodology offered by Luchman (2014) for ordered logistic regression 
with each subgrouping’s dummy codes grouped together as a single independent 
variable in the DA. The DA adds to the ordered logistic regression results in 
Table 1 by displaying both the value of the McFadden pseudo-R2 which has 
been ascribed to each set of subgroup indicators as well as the rank order of 
the subgroup indicators based on each independent variables’ ascribed share of 
the R2.

The primary advantage of the DA results over the ordered logistic regression’s 
ORs deals with the clear hierarchy it generated for the subgroupings. In line with 
the ordered logistic regression results, urbanicity and marital status emerged as 
the top two subgroupings, and biological sex and employment status emerged 
as the bottom two subgroupings. The dominance analysis shows, however, 

Table 1  Analysis results for political party affiliation by subgroup indicators.

   Unweighted general dominance   Weighted general dominance

Odds 
ratio

  Gen domin 
Stat

  Domin 
rank

  Odds 
ratio

  Gen domin 
Stat

  Domin 
rank

Urbanicity            
  Largest 12 SMSAs   0.5508   0.0046   1   0.5384   0.0045   1
  13-100 largest SMSAs   0.7889       0.7818    
  Largest 12 suburbs   1.1594       1.1367    
  13-100 largest suburbs   1.1591       1.1605    
  Other urban   1.1333       1.1259    
  Other rural   1.1685       1.1287    
Employment status            
  Part-time   1.0605   0.0005   4   1.0742   0.0006   3
  Temporarily Unemployed  0.8914       0.8978    
  Laid off   0.8176       0.7989    
  Retired   0.8859       0.8559    
  School   1.0169       1.0421    
  Keeping house   0.9650       0.9559    
  Other   0.7644       0.7508    
Marital status            
  Widowed   0.7631   0.0015   2   0.7476   0.0013   2
  Separated   0.8380       0.8334    
  Divorced   0.6771       0.6556    
  Never married   0.8534       0.8660    
Biological sex   0.8398   0.0007   3   0.8433   0.0006   4

Overall R2     0.0073       0.0071  

n=51,969; Gen Domin Stat=general dominance statistic; Domin=Dominance; SMSA=standard 
metropolitan statistical area.
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that the share of the R2 ascribed to urbanicity is well over 50 percent (i.e., 
0.0046/0.0073=63%), a substantial margin of dominance over marital status, 
which obtained a value near 20 percent. Thus, contrary to the intuition offered 
by the ordered logistic regression alone, in which the degree of difference was 
less clear, the urbanicity subgrouping is clearly most important and is shown to 
be ~3 times more important than marital status; primarily due to Urbanicity’s 
smaller overlap with other subgroupings. Additionally, the degree of difference 
between biological sex and employment status in terms of their ascribed 
percentage of the R2 is very narrow – which is not obvious from the ordered 
logistic regression’s ORs alone.

In sum, the DA results effectively distill the myriad ORs obtained in the 
full ordered logistic regression model along all other models including different 
combinations of subgroupings. Moreover, the DA results produced a single, 
simple to interpret value to represent the importance of each subgrouping.

Weighted Dominance Analysis

Although useful for identifying important subgroup differences, one drawback 
to DA is it assumes the data were collected using simple random sampling (i.e., 
no model misspecification in terms of design; Azen and Traxel 2009; Luchman 
2014). How to validly compute dominance statistics with complex sampled data 
has not been addressed in the literature. Because most nationally representative 
polls and surveys (such as the GSS) use complex sampling designs, the question 
of how to incorporate complex sampling design information into DA is 
necessary for unbiased subgrouping comparisons.

The approach I recommend for unbiased dominance statistics from complex 
sampled data is to a) use a log-likelihood-based model fit index, and b) to use 
weighted regression analyses to compute the dominance statistics.

DA is primarily a descriptive procedure that is focused on evaluating 
the contributions to model fit made by the subgroup’s indicators (Grömping 
2007). Thus, dominance statistics will be driven only by the values of the point/
coefficient estimates from the regressions. As a consequence, the pseudo-log-
likelihood (sum of the products of observation-level weights and log-likelihoods) 
used by complex sample-adjusted data can be used just as a log-likelihood for 
computing a pseudo-R2 such as the McFadden’s pseudo-R2 (1973) recommended 
in previous research. Whereas the pseudo-log-likelihood alone can underestimate 
the variability/standard error of the parameter estimates, the pseudo-log-
likelihood is sufficient to estimate parameters (see Roberts et al. 1987). Thus, the 
pseudo-log-likelihoods can be used to replace traditional log-likelihoods for the 
purpose of obtaining a pseudo-R2.

In addition, because most other aspects of complex sampling designs (i.e., 
strata indicators, clustering), only affect estimates’ sampling variability and not 
the parameter estimates, only survey weights are needed to obtain unbiased 
dominance statistics (e.g., Roberts et al. 1987).
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To demonstrate the non-trivial adjustment survey weights can have on DA 
results, I re-conducted the DA in Table 1 with the GSS’ survey weight applied 
to all years in the sample (i.e., the WTSSALL weight). Table 1 reveals that 
biological sex and employment status actually reversed in rank order due to 
the effect of the survey weights, resulting in employment status being more 
important than biological sex (though the estimates were identical when 
rounded to four significant digits). Whereas the above demonstration shows 
that weights can affect subgrouping importance, the next section offers stronger 
evidence of the increase in accuracy that can be attained by weights under 
complex sampling designs using a simulation. Specifically, the simulation was 
conducted to demonstrate that in complex sampling situations, using survey 
weights alone can recover unbiased dominance statistics.

Methods

Simulations were conducted using Stata 12.1 (StataCorp 2011). A population 
of size 30,000 was simulated representing three strata of size 10,000. Five 
variables were simulated (a binary survey measure and four binary subgroup 
indicators) that were based on the population correlation matrix used by Azen 
and Traxel (2009, table 4). In order for the weights to provide information 
about the estimates, the different strata were given different patterns of inter-
correlations. Specifically, stratum 1 had a pattern of relationships that matched 
those from Azen and Traxel. Stratum 2 had a pattern of relationships that were 
uniformly 0.1 less than those from Azen and Traxel (i.e., instead of 0.7, the 
X1Y correlation was 0.6). Finally, stratum 3 had a pattern of relationships that 
were ½ the magnitude of those from Azen and Traxel (i.e., instead of 0.7, the 
X1Y correlation was 0.35). All variables were generated to be distributed unit 
multivariate normal (means 0, SDs 1), and discretized by splitting at 0; all scores 
above 0 were coded as 1, the rest were coded as 0.

The strata were unequally sampled from to simulate a complex sampling 
design. Specifically, the proportion sampled from each stratum was obtained 
by using the probability density from a Beta(2, 1) distribution, which produces 
a negatively skewed distribution with values that range between 0 and 1. 
The probability density between values 0 and 0.33, or ~58 percent of the 
sample, was assigned to be sampled from stratum 1. The probability density 
between values 0.33 and 0.67, or ~24 percent of the sample, was assigned to 
be sampled from stratum 2. The probability density between values 0.67 and 
1, or ~18 percent of the sample, was assigned to be sampled from stratum 3. 
One thousand population members total were then randomly sampled within 
each stratum from the population of 30,000 using the sampling fraction 
designated for each stratum (~580 from stratum 1, ~240 from stratum 2, 
~180 from stratum 3). Survey weights for each stratum were generated as 
the inverse sampling fraction from the population in their stratum for each 
sample member.
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A DA was then conducted on the sampled cases predicting the survey measure 
using the subgroup indicators with and without weights and stratification 
(four conditions total). A fifth comparison condition where 1,000 cases were 
obtained as a simple random sample from the same population of 30,000 was 
also obtained. The DA was based on probit regression-based McFadden’s R2s 
and the Stata program domin (Luchman 2013). One thousand repetitions of the 
simulation were conducted.

Results

Table 2 shows that the survey weights recover the population values in the 
stratified sampling situation. In fact, the weighted DA (“Weighted-only” and 
“Stratified and Weighted” columns) are very similar to those obtained from 
the population as well as those based on simple random sampling (i.e., the 
“Simple Random Sample” column). Consistent with my assertion above that 
complex survey features other than survey weights are not useful for importance 
determination, incorporating strata into the regressions used in the DA was 
irrelevant to dominance statistic computation, producing no change from the 
(un-)weighed results (i.e., compare “Unweighted” to “Stratified-only” and 
“Weighted-only” to “Stratified and Weighted” columns).

The central conclusion to be drawn from the simulation is that unweighted 
and stratified-only analyses tend to produce values that are inaccurate 
because they overemphasize the contribution of overrepresented strata and 
underemphasize the contribution of the underrepresented strata relative to the 
population. In contradistinction, analyses that incorporate the survey weights 
properly calibrate the sample representation by stratum and result in more 
accurate dominance statistics.

Recommendations and Discussion

DA is usually considered a supplement to and not a replacement for a regression 
analysis (e.g., Nimon and Oswald 2013). Whereas DA supplements regression, 
I have shown that dominance statistics can be much more interpretable than 
regression coefficients for determining subgroup importance.

Table 2  Average dominance statistics across all simulated datasets.

Subgroup 
variable

  Population-level 
values

  Unweighted   Stratified-
only

  Weighted-
only

  Stratified and 
weighted

  Simple random 
sample

X1   0.0943   0.1205   0.1205   0.0954   0.0954   0.0952
X2   0.0656   0.0835   0.0835   0.0657   0.0657   0.0665
X3   0.0378   0.0483   0.0483   0.0389   0.0389   0.0390
X4   0.0240   0.0324   0.0324   0.0252   0.0252   0.0249
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The simulation above also shows that in situations where survey weights 
are required, using a likelihood-based fit metric and the survey weights alone 
produces unbiased dominance statistics and is the recommended method to 
make the importance determination sampling design-unbiased – a situation that 
can result in the rank order of importance of subgroupings to change as was 
observed in the GSS, political party affiliation example.

When to Use Dominance Analysis

DA is recommended when the survey measure and subgroupings meet several 
criteria, specifically:

1)	There are multiple, partially overlapping subgroupings;
2)	The survey measure lacks an easily interpretable metric;
3)	There are many categories within the subgrouping(s).
The DA method provides a theory-grounded method for ascribing 

components of a fit metric to multiple, correlated independent variables. Thus, 
when subgroupings overlap, the DA method provides a useful, fair way to 
determine which is most important. Situations where the subgroupings are 
independent provide less benefit to interpretation.

The DA method provides a relative metric by which to determine 
importance based on the focal fit metric, which can avoid the arbitrariness of 
most survey questions’ scales. By contrast, meaningful survey metrics could 
be better analyzed using regression analysis’ results. Finally, the DA method 
allows for grouping and representing the effect of several regression coefficients 
simultaneously, which can greatly facilitate interpretation.

The political party affiliation example from the GSS meets all three desirable 
criteria for DA and was a critical tool for determining importance.
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